Spontaneous secondary spiking in excitable cells.
نویسندگان
چکیده
Kepler & Marder (1993, Biol. Cybern.68, 209-214) proposed a model describing the electrical activity of a crab neuron in which a train of directly induced action potentials is sometimes followed by one or more spontaneous action potentials, referred to as spontaneous secondary spikes. We reduce their five-dimensional model to three dimensions in two different ways in order to gain insight into the mechanism underlying the spontaneous spikes. We then treat a slowly varying current as a parameter in order to give a qualitative explanation of the phenomenon using phase-plane and bifurcation analysis. We demonstrate that a three-dimensional model, consisting of a two-dimensional excitable system plus a slow inward current, is sufficient to produce the behaviour observed in the original model. The exact dynamics of the excitable system are not important, but the relative time constant and amplitude of the slow inward current are crucial. Using the numerical bifurcation analysis package AUTO (Doedel & Kernevez, 1986, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. California Institute of Technology), we compute bifurcation diagrams using the maximum amplitude of the slow inward current as the bifurcation parameter. The full and reduced models have a stable resting potential for all values of the bifurcation parameter. At a critical value of the bifurcation parameter, a stable tonic firing mode arises via a saddle-node of periodics bifurcation. Whether or not the models can exhibit transient or continuous spontaneous spiking depends on their position in parameter space relative to this saddle-node of periodics.
منابع مشابه
Spontaneous formation of synchronization clusters in homogenous neuronal ensembles induced by noise and interaction delays.
The spontaneous formation of clusters of synchronized spiking in a structureless ensemble of equal stochastically perturbed excitable neurons with delayed coupling is demonstrated for the first time. The effect is a consequence of a subtle interplay between interaction delays, noise, and the excitable character of a single neuron. The dependence of the cluster properties on the time lag, noise ...
متن کاملIntrinsic coherence resonance in excitable membrane patches.
The influence of intrinsic channel noise on the spiking activity of excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels does affect the electric properties of the cell-membrane patches. There exists an optimal size of the membrane patch for which the internal nois...
متن کاملEffect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model.
The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of...
متن کاملSpike synchronization of a chaotic array as a phase transition
We study how a coupled array of spiking chaotic systems synchronizes to an external driving in a short time. Synchronization means spike separation at adjacent sites much shorter than the average inter-spike interval; a local lack of synchronization is called a defect. The system displays sudden spontaneous defect disappearance at a critical coupling strength. Below critical coupling, the syste...
متن کاملPhase control of excitable systems
Here we study how to control the dynamics of excitable systems by using the phase control technique. Excitable systems are relevant in neuronal dynamics and therefore this method might have important applications. We use the periodically driven FitzHugh–Nagumo (FHN) model, which displays both spiking and non-spiking behaviours in chaotic or periodic regimes. The phase control technique consists...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 205 2 شماره
صفحات -
تاریخ انتشار 2000